

Proven Ways to Reduce Operating Costs and Greenhouse Gas Emissions

Energy 2006 Chicago

Ian Spanswick

Product Manager - Industrial Systems

Excellence in Energy Efficiency

- Energy Supply Diversification
- Heat Pumps
- Onsite Thermal and Power Generation
- Comparison study Economic and Environmental Benefits

Energy Supply Diversification

Body Shop: Building Strategies

High Efficiency Electric Chillers

250 to 3,000 TR / 880 to 10,000 kW

Improving Chiller Performance

Energy Gas Engine Drive Chillers

Double Effect Absorption Chillers

200 to 700 TR, 700 to 2,400kW Gas / Oil or MP Steam

Thermal Storage Systems

Load (TR)

Typical Building Hourly Cooling Load

What is Ice Storage System?

Usage of Ice Storage System

500 to >2000 TR, 1,800 to >7,000kW

EnergyThermal Storage Needs Flexibility

Body Shop: Building **Strategies**

Building **Strategies**

Heat Pumps

Heat Rejection

Heat from Cooling Towers

Heat from Exhaust Air

Heat from Exhaust Air

Summer operation

Cost to produce 100,000 BTU

- Natural Gas Water Heater
 - 100,000 Btu / 85% efficiency / 1000 Btu/ft³ / \$10.00/1000 ft³ = **\$1.18**
- Fuel Oil Water Heater
 - **\$2.19** 100,000 Btu / 85% efficiency / 140,000 Btu/gal / \$2.60/gal =
- Electric Water Heater
 - 100,000 Btu / 95% efficiency / 3412 BTU/hr/kW / \$0.12/kW.hr = \$3.70
- **Heat Pump**
 - 100,000 Btu / 600% efficiency / 3412 BTU/hr/kW / \$0.12/kW.hr **‡0.59**

Onsite

Thermal and Power Generation

Energy Independence - CHP

Traditional Power Generation

Distributed Generation, Heating & Cooling

Overall Reduction in CO₂ Emissions

Energy Thermally Activated Technologies

Body Shop: Building **Strategies**

Distributed Generation Technologies

Gas-turbine

Micro-turbine

I.C. Engine

Thermally-Activated HVAC Technologies

800°F

600°F

360°F

180°F

Double-Effect **Absorption** Chiller

Steam Turbine Centrifugal Chiller

Single-Effect Absorption Chiller

Thermally Activated Technology

CHP Output Efficiency is generally higher for Combustion Turbine based CHP system than IC Engine based systems.

Generating Technology	Thermal Technology (Chiller)	Electrical Output (MW)	Thermal Electric Ratio (TR/kW)	CHP Output efficiency, HHV
Large Combustion Turbine	Steam Turbine	>2.5	0.6	77%
Small Combustion Turbine	Double Effect Absorption	1 to 2.5	0.7	69%
Microturbine	Double Effect Absorption	0.25 to 0.5	0.5	60%
Reciprocating Engine	Double Effect Absorption	1.5 to 5	0.2	50%
Reciprocating Engine	Single Effect Absorption	0.25 to 5	0.3	58%
Microturbine	Single Effect Absorption	0.25 to 0.5	0.4	44%

CHP Output Efficiency = (Total busbar kW + Cooling converted directly to kW) / Fuel Input (HHV)

Energy Single Effect Absorption Chillers

100 to 1,300 TR, 350 to 4,500kW Hot water & LP Steam

CHP >1 MW

Energy Steam Turbine Chillers

700 to 5,000 TR / 2500 to 18,000 kW

CHP Developments

Body Shop: Building Strategies

- Traditional CHP has required complex integration
 - Generator / Heat Recovery
 Chillers / Controls
 Interconnection
 - Opportunities for failure ~ !!!
- Move to Modular Systems
 - Generator & Heat Recovery Module
 - Power side generation, integration and control
 - Heat recovery
 - Thermal Module
 - Heating Cooling components
 - Heat rejection management
 - Distribution and Controls
- Pre-Designed Solutions Make it Easy
- Watch this space!

Economic & Environmental

Benefits

Energy Real World Evaluation...

Utility Data

Electric Rate \$0.12/kW.hr

\$33.3/GJ

Gas Rate \$1.00/therm

\$9.98/GJ

CA CO₂ Emissions 0.80lb/kW.hr

101.4kg/GJ

US CO₂ Emissions 1.3lb/kW.hr

165kg/GJ

Gas CO₂ Emissions 11.7lb/therm

53.0kg/GJ

Base Case

- 5,000kW electric supply
- 3 x 800TR (8,400kW) electric chillers
- 17,000 MBH (5,000kW) heating boiler

Heating & Cooling

- \$1,142,000 per year
- 6,100 tons / year CO₂

Power, Heating & Cooling

- \$4,340,000 per year
- 16,800 tons / year CO₂

2006 Scenario 1 - Gas Engine Drive Chillers

Strategies

Heating and Cooling

- 3 x 800TR gas engine chillers
- No electric chillers
- 10,000 MBH (3,000kW) heating boiler

Heating & Cooling

- \$909,000 per year
- 5,300 tons / year CO₂

Capital Add - \$910k Energy Savings - \$232k/yr Maintenance - \$37k/yr Simple Payback – 4.7yrs

Scenario 2 – Heat Pump Chillers

Strategies

Heating and Cooling

- 2 x 600TR heat pump chillers
- 2 x 600TR electric chillers
- 7,000 MBH (2,000kW) heating boiler

Heating & Cooling

- \$839,000 per year
- 3,070 tons / year CO₂

Capital Add - \$170k Energy Savings - \$303k/yr Maintenance - \$negligible Simple Payback — 0.6yrs

Scenario 3 – Gas Engine CHP

Strategies

Electric, Heating and Cooling

- 2 x 1.2MW engine generators & heat recovery
- 1 x 600TR absorption chiller
- 2 x 900TR electric chillers
- 3,500 MBH (1,000kW) heating boiler

Power, Heating & Cooling

- \$3,240,000 per year
- 7,070 tons / year CO₂

Capital Add - \$1,500k Energy Savings - \$1,100k/yr Maintenance - \$173k/yr Simple Payback – 1.6yrs

Scenario 4 – Gas Turbine CHP

Building Strategies

Electric, Heating and Cooling

- 1 x 1.5MW gas turbine generators & HR
- 1 x 1000TR steam turbine chillers
- 2 x 700TR electric chillers
- 3,500 MBH (1,000kW) heating boiler

Power, Heating & Cooling

- \$3,750,000 per year
- 8,770 tons / year CO₂

Capital Add - \$2,200k Energy Savings - \$600k/yr Maintenance - \$104k/yr Simple Payback - 4.5yrs

Summary

Gas \$1.0/Therm

Key

Cost Savings

CO₂ Savings

Thank You!

Ian Spanswick – ian.spanswick@york.com